COVID-19 pandemic has rapidly affected our day-to-day life disrupting the world trade and movements. Wearing a protective face mask has become a new normal. In the near future, many public service providers will ask the customers to wear masks correctly to avail of their services. Therefore, face mask detection has become a crucial task to help global society. This paper presents a simplified approach to achieve this purpose using some basic Machine Learning packages like TensorFlow, Keras, OpenCV and Scikit-Learn. The proposed method detects the face from the image correctly and then identifies if it has a mask on it or not. As a surveillance task performer, it can also detect a face along with a mask in motion. The method attains accuracy up to 95.77% and 94.58% respectively on two different datasets. We explore optimized values of parameters using the Sequential Convolutional Neural Network model to detect the presence of masks correctly without causing over-fitting.
CITATION STYLE
Das, A., Wasif Ansari, M., & Basak, R. (2020). Covid-19 Face Mask Detection Using TensorFlow, Keras and OpenCV. In 2020 IEEE 17th India Council International Conference, INDICON 2020. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/INDICON49873.2020.9342585
Mendeley helps you to discover research relevant for your work.