In cell biology, recently developed technologies for studying suspended cell clusters, such as organoids or cancer spheroids, hold great promise relative to traditional 2D cell cultures. There is, however, growing awareness that sample confinement, such as fixation on a surface or embedding in a gel, has substantial impact on cell clusters. This creates a need for contact-less tools for 3D manipulation and inspection. This work addresses this demand by presenting a reconfigurable, hybrid sono-optical system for contact-free 3D manipulation and imaging, which is suitable for biological samples up to a few hundreds of micrometers in liquid suspension. In our sono-optical device, three independently addressable MHz transducers, an optically transparent top-transducer for levitation and two side-transducers, provide ultrasound excitation from three orthogonal directions. Steerable holographic optical tweezers give us an additional means of manipulation of the acoustically trapped specimen with high spatial resolution. We demonstrate how to control the reorientation or the spinning of complex samples, for instance for 3D visual inspection or for volumetric reconstruction. Whether continuous rotation or transient reorientation takes place depends on the strength of the acoustic radiation torque, arising from pressure gradients, compared to the acoustic viscous torque, arising from the shear forces at the viscous boundary layer around the particle. Based on numerical simulations and experimental insights, we develop a strategy to achieve a desired alignment or continuous rotation around a chosen axis, by tuning the relative strengths of the transducers and thus adjusting the relative contributions of viscous and radiation torques. The approach is widely applicable, as we discuss in several generic examples, with limitations dictated by size and shape asymmetry of the samples.
CITATION STYLE
Kvåle Løvmo, M., Pressl, B., Thalhammer, G., & Ritsch-Marte, M. (2021). Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device. Lab on a Chip, 21(8), 1563–1578. https://doi.org/10.1039/d0lc01261k
Mendeley helps you to discover research relevant for your work.