In order to solve the problems of methods that use a single form of sensing, the ease of causing deformation damage to the targets with a low hardness during grasping, and the slow sliding inhibition of a prosthetic hand when the grasping target slides, which are problems that exist in most current intelligent prosthetic hands, this study introduces an adaptive control strategy for prosthetic hands based on multi-sensor sensing. Using a force-sensing resistor (FSR) to collect changes in signals generated after contact with a target, a prosthetic hand can classify the target’s hardness level and adaptively provide the desired grasping force so as to reduce the deformation of and damage to the target in the process of grasping. A fiber-optic sensor collects the light reflected by the object to identify its surface roughness, so that the prosthetic hand adaptively adjusts the sliding inhibition method according to the surface roughness information to improve the grasping efficiency. By integrating information on the hardness and surface roughness of the target, an adaptive control strategy for a prosthetic hand is proposed. The experimental results showed that the adaptive control strategy was able to reduce the damage to the target by enabling the prosthetic hand to achieve stable grasping; after grasping the target with an initial force and generating sliding, the efficiency of slippage inhibition was improved, the target could be stably grasped in a shorter time, and the hardness, roughness and weight ranges of targets that could be grasped by the prosthetic hand were enlarged, thus improving the success rate of stable grasping under extreme conditions.
CITATION STYLE
Wang, Y., Tian, Y., Li, Z., She, H., & Jiang, Z. (2024). Research on Adaptive Grasping with a Prosthetic Hand Based on Perceptual Information on Hardness and Surface Roughness. Micromachines, 15(6). https://doi.org/10.3390/mi15060675
Mendeley helps you to discover research relevant for your work.