Developing and integrating advanced movement features improves automated classification of ciliate species

8Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems.

Cite

CITATION STYLE

APA

Soleymani, A., Pennekamp, F., Petchey, O. L., & Weibel, R. (2015). Developing and integrating advanced movement features improves automated classification of ciliate species. PLoS ONE, 10(12). https://doi.org/10.1371/journal.pone.0145345

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free