A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses

239Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The effectiveness of the ensemble Kalman filter (EnKF) for assimilating radar observations at convective scales is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. The parallel EnKF algorithm of the Data Assimilation Research Testbed (DART) is used for data assimilation, while the Weather Research and Forecasting (WRF) Model is employed as a simplified cloud model at 2-km horizontal grid spacing. In each case, reflectivity and radial velocity measurements are utilized from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) within the U.S. operational network. Observations are assimilated every 2 min for a duration of 60 min and correction of folded radial velocities occurs within the EnKF. Initial ensemble uncertainty includes random perturbations to the horizontal wind components of the initial environmental sounding. The EnKF performs effectively and with robust results across all the cases. Over the first 18-30 min of assimilation, the rms and domain-averaged prior fits to observations in each case improve significantly from their initial levels, reaching comparable values of 3-6 m s-1 and 7-10 dBZ. Representation of mesoscale uncertainty, albeit in the simplest form of initial sounding perturbations, is a critical part of the assimilation system, as it increases ensemble spread and improves filter performance. In addition, assimilation of "no precipitation" observations (i.e., reflectivity observations with values small enough to indicate the absence of precipitation) serves to suppress spurious convection in ensemble members. At the same time, it is clear that the assimilation is far from optimal, as the ensemble spread is consistently smaller than what would be expected from the innovation statistics and the assumed observation-error variance. © 2009 American Meteorological Society.

Cite

CITATION STYLE

APA

Aksoy, A., Dowell, D. C., & Snyder, C. (2009). A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Monthly Weather Review, 137(6), 1805–1824. https://doi.org/10.1175/2008MWR2691.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free