Zigzag phosphorene antidot nanoribbons (ZPANRs) for the detection of nucleobases: A DFT based study

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this work, we have investigated the potential of zigzag phosphorene antidot nanoribbons (ZPANRs) for biosensing applications. ZPANRs were created from the optimized structures of phosphorene nanoribbons by using a density functional theory tool. Utilizing the generalized gradient approximation half method for improving the accuracy of calculations, we have studied the electronic and sensing behavior of ZPANRs based devices wherein nucleobases were inserted into the device. We have compared the device performance of ZPANRs with and without nucleobases and found that using ZPANRs devices, we are able to identify different nucleobases with considerable sensitivity. In a quantitative manner, a max sensitivity of 45 % is achieved while identifying adenine nucleobase using the ZPANRs based devices. From these simulation results, it is predicted that the ZPANR based two-terminal device can work as a possible biosensor.

Cite

CITATION STYLE

APA

Carmel, S., Subramanian, S., Tan, M. L. P., Alias, N. E., Riyadi, M. A., Endro Suseno, J., … Bhattacharyya, A. (2022). Zigzag phosphorene antidot nanoribbons (ZPANRs) for the detection of nucleobases: A DFT based study. Journal of Applied Physics, 131(14). https://doi.org/10.1063/5.0086598

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free