Classification model for accuracy and intrusion detection using machine learning approach

74Citations
Citations of this article
175Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.

Cite

CITATION STYLE

APA

Agarwal, A., Sharma, P., Alshehri, M., Mohamed, A. A., & Alfarraj, O. (2021). Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science, 7, 1–22. https://doi.org/10.7717/PEERJ-CS.437

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free