Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis

116Citations
Citations of this article
174Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Aims: (i) To determine whether exercise-induced increases in muscle mitochondrial volume density (Mito VD ) are related to enlargement of existing mitochondria or de novo biogenesis and (ii) to establish whether measures of mitochondrial-specific enzymatic activities are valid biomarkers for exercise-induced increases in Mito VD . Method: Skeletal muscle samples were collected from 21 healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for the estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high-resolution respirometry were applied to detect changes in specific mitochondrial functions. Result: Mito VD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001); however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+II P ) or cytochrome c oxidase (COX) activity. Correlations were found between Mito VD and CS (P = 0.01; r = 0.58), OXPHOS, CI+CIIP (P = 0.01; R = 0.58) and COX (P = 0.02; R = 0.52) before training; after training, a correlation was found between Mito VD and CS activity only (P = 0.04; R = 0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to Mito VD. This was not the case when normalized to CS activity although the percentage change was comparable . Conclusions: Mito VD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training-induced changes in Mito VD.

Cite

CITATION STYLE

APA

Meinild Lundby, A. K., Jacobs, R. A., Gehrig, S., de Leur, J., Hauser, M., Bonne, T. C., … Lundby, C. (2018). Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiologica, 222(1). https://doi.org/10.1111/apha.12905

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free