From decompression melting to mantle-wedge refertilization and metamorphism: Insights from peridotites of the Alag Khadny accretionary complex SW Mongolia

7Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

This study reports on mineral and bulk rock compositions of metaperidotites from the Alag Khadny accretionary complex in SW Mongolia, to reveal their nature and relationships with associated eclogites. The peridotites preserved original porphyroclastic textures and are composed of olivine, orthopyroxene relics, Cr-spinel, interstitial (not residual) clinopyroxene, and secondary chlorite, tremolite, olivine, Cr-magnetite, clinopyroxene, and antigorite. Cr-spinel has Cr# of 0.3–0.5, and primary olivine shows Mg# of 0.90–0.92. The pyroxenes are high-magnesian with low Al2O3 and Cr2O3. The bulk rocks have U-shaped normalized trace-element patterns with enrichment in LILE, L-MREE relative to HREE, and weak Pb–Sr peaks and Nb–Zr–Hf minima. Interstitial clinopyroxene exhibits V-and U-shaped normalized REE patterns with (La/Yb)N > 1 (Yb = 1.2–3 of chondritic values) and enrichment in fluid-mobile elements and Zr. HREE abundances of clinopyroxene can be simulated by 23–26% partial melting of depleted mantle starting at garnet-facies (6–8%) depths, followed by hydrous or anhydrous melting at spinel-facies depths L-MREE characteristics of clinopyroxenes can be simulated by further interaction of harzburgites with an island-arc basaltic melt in a supra-subduction environment. The association of hydrous secondary minerals in the Alag Khadny peridotites suggests their retrograde metamorphism at 1.6–2.0 GPa and 640–720 °C, similar to P–T conditions reported earlier for the spatially associated eclogites. This supports metamorphism of the Alag Khadny peridotites in a mantle wedge, followed by joint exhumation of peridotites and eclogites. Given the findings above and implying the regional geological background, we advocate for a sequential Neoproterozoic evolution the Alag Khadny harzburgites from (1) their formation by decompression partial melting in an Early Neoproterozoic or older spreading center of a midocean or back-arc setting, and (2) refertilization by supra-subduction melts, followed by (3) Late Neoproterozoic–Early Cambrian hydrous-fluid metamorphism and juxtaposition with eclogites.

Cite

CITATION STYLE

APA

Gornova, M., Karimov, A., Skuzovatov, S., & Belyaev, V. (2020). From decompression melting to mantle-wedge refertilization and metamorphism: Insights from peridotites of the Alag Khadny accretionary complex SW Mongolia. Minerals, 10(5). https://doi.org/10.3390/min10050396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free