Secondary aluminum dross (SAD) is regarded as a solid waste of aluminum recycling process that creates serious environmental and health concerns. However, SAD can also be used as a good source of aluminum, so that utilizing the SAD for the production of valuable products is a promising approach of recycling such waste. In the present work, a novel eco-friendly three-step process was proposed for the synthesis of cryolite (Na3AlF6) from the SAD, and it consisted of (1) water-washing pretreatment of SAD, (2) extraction of Al component via pyro-hydrometallurgy, including low-temperature alkaline smelting, water leaching and purification of leachate in sequence, (3) precipitation of cryolite from the purified NaAlO2 solution using the carbonation method. By analysis of the parameter optimization for each procedure, it was found that the maximum hydrolysis efficiency of aluminum nitride (AlN) in the SAD was around 68.3% accompanied with an extraction efficiency of Al reaching 91.5%. On this basis, the cryolite of high quality was synthesized under the following optimal carbonation conditions: reaction temperature of 75 °C, NaAlO2 concentration of 0.11 mol/L, F/(6Al) molar ratio of 1.10, and 99.99% CO2 gas pressure, and flow rate of 0.2 MPa and 0.5 L/min respectively. The formation of Na3AlF6 phase can be detected by XRD. The morphological feature observed by SEM revealed that the as-synthesized cryolite had a polyhedral shape (~1 μm size) with obvious agglomeration. The chemical composition and ignition loss of the as-synthesized cryolite complied well with the requirements of the Chinese national standard (GB/T 4291-2017).
CITATION STYLE
Wan, B., Li, W., Sun, W., Liu, F., Chen, B., Xu, S., … Yi, A. (2020). Synthesis of cryolite (Na3AlF6) from secondary aluminum dross generated in the aluminum recycling process. Materials, 13(17). https://doi.org/10.3390/ma13173871
Mendeley helps you to discover research relevant for your work.