Crystal structure of human importin-α1 (Rch1), revealing a potential autoinhibition mode involving homodimerization

21Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

In this study, we determined the crystal structure of N-terminal importin-β-binding domain (IBB)-truncated human importin-α1 (ΔIBB-h-importin-α1) at 2.63 Å resolution. The crystal structure of ΔIBB-h-importin-α1 reveals a novel closed homodimer. The homodimer exists in an autoinhibited state in which both the major and minor nuclear localization signal (NLS) binding sites are completely buried in the homodimerization interface, an arrangement that restricts NLS binding. Analytical ultracentrifugation studies revealed that ΔIBB-h-importin-α1 is in equilibrium between monomers and dimers and that NLS peptides shifted the equilibrium toward the monomer side. This finding suggests that the NLS binding sites are also involved in the dimer interface in solution. These results show that when the IBB domain dissociates from the internal NLS binding sites, e.g., by binding to importin-β, homodimerization possibly occurs as an autoinhibition state.

Cite

CITATION STYLE

APA

Miyatake, H., Sanjoh, A., Unzai, S., Matsuda, G., Tatsumi, Y., Miyamoto, Y., … Aida, Y. (2015). Crystal structure of human importin-α1 (Rch1), revealing a potential autoinhibition mode involving homodimerization. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone.0115995

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free