We study fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. We consider the presence of a chemical potential μ for the fermionic charge, and monitor its evolution with real-time classical lattice simula- tions. This method accounts for short-scale fluctuations not included in the usual effective magneto-hydrodynamics (MHD) treatment. We observe a self-similar decay of the chemi- cal potential, accompanied by an inverse cascade process in the gauge field that leads to a production of long-range helical magnetic fields. We also study the chiral charge dynamics in the presence of an external magnetic field B, and extract its decay rate Γ5≡dlogμdt. We provide in this way a new determination of the gauge coupling and magnetic field de- pendence of the chiral rate, which exhibits a best fit scaling as Γ5∝112B2. We confirm numerically the fluctuation-dissipation relation between Γ5 and Γdiff , the Chern-Simons diffusion rate, which was obtained in a previous study. Remarkably, even though we are outside the MHD range of validity, the dynamics observed are in qualitative agreement with MHD predictions. The magnitude of the chiral/diffusion rate is however a factor ∼ 10 times larger than expected in MHD, signaling that we are in reality exploring a dif- ferent regime accounting for short scale fluctuations. This discrepancy calls for a revision of the implications of fermion number and chirality non-conservation in finite tempera- ture Abelian gauge theories, though no definite conclusion can be made at this point until hard-thermal-loops are included in the lattice simulations.
CITATION STYLE
Figueroa, D. G., Florio, A., & Shaposhnikov, M. (2019). Chiral charge dynamics in Abelian gauge theories at finite temperature. Journal of High Energy Physics, 2019(10). https://doi.org/10.1007/JHEP10(2019)142
Mendeley helps you to discover research relevant for your work.