Thermohaline residual circulation of the Wadden Sea

15Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study, we present estuarine circulation driven by horizontal density gradients generated by spatially homogeneous surface buoyancy fluxes over sloping bathymetry as a dynamical feature in the coastal zone being potentially relevant for cross-coastal transports. A combination of downward buoyancy flux (net precipitation, net heating) together with tidal mixing may generate a classical estuarine circulation with landward near-bottom residual currents. The Wadden Sea of the south-eastern North Sea is a prototype for such a coastal regime. It is characterised by extensive inter-tidal flats along the coast separated from the open sea by barrier islands. Here, we present long-term observations from the Wadden Sea covering the years 2006–2011. We investigated the statistics of the density gradients. Typical values for the landward density gradient were ∂xρ≈−3⋅10−5 kg m−4 and maximum values were ∂xρ≈−6.5⋅10−5 kg m−4. The magnitude of the density gradient resulted from the magnitude of the salinity gradient, with some modifications by the positive (towards the coast, in spring) or negative (towards the sea, in autumn) temperature gradient. To explain the generation of estuarine circulation by the surface buoyancy flux, we construct an analytical model representing the geometry and dynamics of a Wadden Sea Basin. With downward buoyancy flux, a weak classical estuarine circulation due to gravitational forcing results, whereas upward buoyancy flux drives inverse estuarine circulation. Finally, a two-dimensional (vertical-longitudinal) numerical model was set up for the idealised geometry, including tidally asymmetric turbulent mixing. This results in significantly stronger estuarine circulation due to the presence of tidal straining. The model assesses the circulation due to neutral and upward surface buoyancy fluxes. We conclude that these mechanisms may be important in many coastal areas and may substantially contribute to coast-to-sea exchange in these areas.

Cite

CITATION STYLE

APA

Burchard, H., & Badewien, T. H. (2015). Thermohaline residual circulation of the Wadden Sea. Ocean Dynamics, 65(12), 1717–1730. https://doi.org/10.1007/s10236-015-0895-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free