It is well known that the sum S of n independent gamma variables-which occurs often, in particular in practical applications-can typically be well approximated by a single gamma variable with the same mean and variance (the distribution of S being quite complicated in general). In this paper, we propose an alternative (and apparently at least as good) single-gamma approximation to S. The methodology used to derive it is based on the observation that the jump density of S bears an evident similarity to that of a generic gamma variable, S being viewed as a sum of n independent gamma processes evaluated at time 1. This observation motivates the idea of a gamma approximation to S in the first place, and, in principle, a variety of such approximations can be made based on it. The same methodology can be applied to obtain gamma approximations to a wide variety of important infinitely divisible distributions on ℝ + or at least predict/confirm the appropriateness of the moment-matching method (where the first two moments are matched); this is demonstrated neatly in the cases of negative binomial and generalized Dickman distributions, thus highlighting the paper's contribution to the overall topic.
CITATION STYLE
Covo, S., & Elalouf, A. (2014). A novel single-gamma approximation to the sum of independent gamma variables, and a generalization to infinitely divisible distributions. Electronic Journal of Statistics, 8(1), 894–926. https://doi.org/10.1214/14-EJS914
Mendeley helps you to discover research relevant for your work.