Effect of Varying Plasma Powers on High-Temperature Applications of Plasma-Sprayed Al0.5CoCrFeNi2Ti0.5 Coatings

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this work, the microstructure and mechanical properties of atmospheric plasma-sprayed coatings of Al0.5CoCrFeNi2Ti0.5, prepared using gas-atomized powders at varying spray powers, are studied in as-sprayed and heat-treated conditions. Gas-atomized powders had spherical shapes and uniform element distributions, with major FCC phases and metastable BCC phases. The metastable BCC phase transformed to ordered and disordered BCC phases when sufficient energy was applied during the plasma-spraying process. During the heat treatment process for 2 hrs, disordered BCCs transformed into ordered BCCs, while the intensity of the FCC peaks increased. Spraying power plays a significant role in the microstructure and mechanical properties of plasma sprayed because at a high power, coatings exhibit better mechanical properties due to their dense microstructures resulting in less defects. As the plasma current was increased from 500 A to 700 A, the coatings’ hardness increased by approximately 21%, which is directly proportional to the decreased wear rate of the coatings at high spraying powers. As the coatings experienced heat treatments, the coatings sprayed with a higher spraying power showed higher hardness and wear resistances. Precipitation strengthening played a significant role in the hardness and wear resistances of the coatings due to the addition of the titanium element.

Cite

CITATION STYLE

APA

Rotich, S. K., Kipkirui, N. G., Lin, T. T., & Chen, S. H. (2022). Effect of Varying Plasma Powers on High-Temperature Applications of Plasma-Sprayed Al0.5CoCrFeNi2Ti0.5 Coatings. Materials, 15(20). https://doi.org/10.3390/ma15207198

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free