Maltotriose, the second most abundant sugar of brewer's wort, is not fermented but is respired by several industrial yeast strains. We have isolated a strain capable of growing on a medium containing maltotriose and the respiratory inhibitor, antimycin A. This strain produced equivalent amounts of ethanol from 20 g I-1 glucose, maltose, or maltotriose. We performed a detailed analysis of the rates of active transport and intracellular hydrolysis of maltotriose by this strain, and by a strain that does not ferment this sugar. The kinetics of sugar hydrolysis by both strains was similar, and our results also indicated that yeast cells do not synthesize a maltotriose-specific α-glucosidase. However, when considering active sugar transport, a different pattern was observed. The maltotriose-fermenting strain showed the same rate of active maltose or maltotriose transport, while the strain that could not ferment maltotriose showed a lower rate of maltotriose transport when compared with the rates of active maltose transport. Thus, our results revealed that transport across the plasma membrane, and not intracellular hydrolysis, is the rate-limiting step for the fermentation of maltotriose by these Saccharomyces cerevisiae cells.
CITATION STYLE
Zastrow, C. R., Hollatz, C., De Araujo, P. S., & Stambuk, B. U. (2001). Maltotriose fermentation by Saccharomyces cerevisiae. In Journal of Industrial Microbiology and Biotechnology (Vol. 27, pp. 34–38). https://doi.org/10.1038/sj.jim.7000158
Mendeley helps you to discover research relevant for your work.