Chitosan-Biopolymer-Entrapped Activated Charcoal for Adsorption of Reactive Orange Dye from Aqueous Phase and CO2 from Gaseous Phase

32Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Polymers have been proven to be an interesting class of adsorbents applied in water treatment. Biopolymers are of special interest due to their unique properties such as biocompatibility, biodegradability, and reusability. This work reports a composite formed by a chitosan biopolymer and activated charcoal using sodium citrate as a crosslinking agent. The chitosan–citrate-activated charcoal composite (CCA) was characterized using FT–IR, SEM, EDAX, XRD, TGA–DTA and BET surface area analysis. The material was found to be microporous in nature with a surface area of 165.83 m2/g that led to high adsorption capacities toward both the targeted pollutants. In an aqueous phase, the dye adsorption studies were carried out with reactive orange 16 (R-16) dye, while in a gaseous phase, CO2 adsorption capacity was evaluated. Under optimum solution conditions, maximum R-16 dye removal capacity was found to be 34.62 mg g−1, while in the gas phase the CO2 adsorption capacity was found to be 13.15 cm3g−1. Intrinsic microporosity of CCA resulted in an enhanced capture capacity for R-16 dye and carbon dioxide in the respective phases. Material sustainability studies were carried out to evaluate various sustainability parameters.

Cite

CITATION STYLE

APA

Nandanwar, P., Jugade, R., Gomase, V., Shekhawat, A., Bambal, A., Saravanan, D., & Pandey, S. (2023). Chitosan-Biopolymer-Entrapped Activated Charcoal for Adsorption of Reactive Orange Dye from Aqueous Phase and CO2 from Gaseous Phase. Journal of Composites Science, 7(3). https://doi.org/10.3390/jcs7030103

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free