An iterative algorithm for semisupervised classification of hotspots on bone scintigraphies of patients with prostate cancer

5Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Prostate cancer (PCa) is the second most diagnosed cancer in men. Patients with PCa often develop metastases, with more than 80% of this metastases occurring in bone. The most common imaging technique used for screening, diagnosis and follow-up of disease evolution is bone scintigraphy, due to its high sensitivity and widespread availability at nuclear medicine facilities. To date, the assessment of bone scans relies solely on the interpretation of an expert physician who visually assesses the scan. Besides this being a time consuming task, it is also subjective, as there is no absolute criteria neither to identify bone metastases neither to quantify them by a straightforward and universally accepted procedure. In this paper, a new algorithm for the false positives reduction of automatically detected hotspots in bone scintigraphy images is proposed. The motivation relies in the difficulty of building a fully annotated database. In this way, our algorithm is a semisupervised method that works in an iterative way. The ultimate goal is to provide the physician with a fast, precise and reliable tool to quantify bone scans and evaluate disease progression and response to treatment. The algorithm is tested in a set of bone scans manually labeled according to the patient’s medical record. The achieved classification sensitivity, specificity and false negative rate were 63%, 58% and 37%, respectively. Comparison with other state-of-the-art classification algorithms shows superiority of the proposed method.

Cite

CITATION STYLE

APA

Providência, L., Domingues, I., & Santos, J. (2021). An iterative algorithm for semisupervised classification of hotspots on bone scintigraphies of patients with prostate cancer. Journal of Imaging, 7(8). https://doi.org/10.3390/jimaging7080148

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free