Data-augmentation methods have emerged as a viable approach for improving the state-of-the-art performances for classifying mild Parkinson’s disease using deep learning with time-series data from an inertial measurement unit, considering the limited amount of training datasets available in the medical field. This study investigated effective data-augmentation methods to classify mild Parkinson’s disease and healthy participants with deep learning using a time-series gait dataset recorded via a shank-worn inertial measurement unit. Four magnitude-domain-transformation and three time-domain-transformation data-augmentation methods, and four methods involving mixtures of the aforementioned methods were applied to a representative convolutional neural network for the classification, and their performances were compared. In terms of data-augmentation, compared with baseline classification accuracy without data-augmentation, the magnitude-domain transformation performed better than the time-domain transformation and mixed-data augmentation. In the magnitude-domain transformation, the rotation method significantly contributed to the best performance improvement, yielding accuracy and F1-score improvements of 5.5 and 5.9%, respectively. The augmented data could be varied while maintaining the features of the time-series data obtained via the sensor for detecting mild Parkinson’s in gait; this data attribute may have caused the aforementioned trend. Notably, the selection of appropriate data extensions will help improve the classification performance for mild Parkinson’s disease.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Uchitomi, H., Ming, X., Zhao, C., Ogata, T., & Miyake, Y. (2023). Classification of mild Parkinson’s disease: data augmentation of time-series gait data obtained via inertial measurement units. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-39862-4