Tribological behavior and microstructural evolution of lubricating film of silver matrix self-lubricating nanocomposite

21Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this study is to fabricate the nanocomposite with low friction and high wear resistance using binary solid lubricant particles. The microstructure and tribological performance of the nanocomposite are evaluated, and the composition and film thickness of the lubricating film are observed and analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The nanocomposite exhibited improved tribological properties with a friction coefficient as low as 0.12 and a low wear rate of 2.17 × 10−6 mm3/(N·m) in high-purity nitrogen atmosphere. Decreasing sliding speed can increase lubricating film thickness, and the thickest lubricating film is approximately 125 nm. As the film thickness of the lubricating film exceeded 90 nm, the friction coefficient curves became smooth. In compared with WS2, MoS2 can be more effective in forming the transfer layer on the worn surfaces at the initial stage of the tribological process.

Cite

CITATION STYLE

APA

Kang, X., Yu, S., Yang, H., Sun, Y., & Zhang, L. (2021). Tribological behavior and microstructural evolution of lubricating film of silver matrix self-lubricating nanocomposite. Friction, 9(5), 941–951. https://doi.org/10.1007/s40544-020-0379-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free