D-Cysteine Activates Chaperone-Mediated Autophagy in Cerebellar Purkinje Cells via the Generation of Hydrogen Sulfide and Nrf2 Activation

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Chaperone-mediated autophagy (CMA) is a pathway in the autophagy-lysosome protein degradation system. CMA impairment has been implicated to play a role in spinocerebellar ataxia (SCA) pathogenesis. D-cysteine is metabolized by D-amino acid oxidase (DAO), leading to hydrogen sulfide generation in the cerebellum. Although D-cysteine alleviates the disease phenotypes in SCA-model mice, it remains unknown how hydrogen sulfide derived from D-cysteine exerts this effect. In the present study, we investigated the effects of D-cysteine and hydrogen sulfide on CMA activity using a CMA activity marker that we have established. D-cysteine activated CMA in Purkinje cells (PCs) of primary cerebellar cultures where DAO was expressed, while it failed to activate CMA in DAO-deficient AD293 cells. In contrast, Na2 S, a hydrogen sulfide donor, activated CMA in both PCs and AD293 cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to be activated by hydrogen sulfide and regulate CMA activity. An Nrf2 inhibitor, ML385, prevented CMA activation triggered by D-cysteine and Na2 S. Additionally, long-term treatment with D-cysteine increased the amounts of Nrf2 and LAMP2A, a CMA-related protein, in the mouse cerebellum. These findings suggest that hydrogen sulfide derived from D-cysteine enhances CMA activity via Nrf2 activation.

Cite

CITATION STYLE

APA

Ueda, E., Ohta, T., Konno, A., Hirai, H., Kurauchi, Y., Katsuki, H., & Seki, T. (2022). D-Cysteine Activates Chaperone-Mediated Autophagy in Cerebellar Purkinje Cells via the Generation of Hydrogen Sulfide and Nrf2 Activation. Cells, 11(7). https://doi.org/10.3390/cells11071230

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free