Mutational Analysis of the Properties of Caveolin-1

  • Song K
  • Tang Z
  • Li S
  • et al.
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Caveolin is a principal structural component of caveolae membranes in vivo. Recently, a family of caveolin-related proteins has been identified; caveolin has been retermed caveolin-1. Caveolin family members share three characteristic properties: (i) detergent insolubility at low temperatures; (ii) self-oligomerization; and (iii) incorporation into low density Triton-insoluble fractions enriched in caveolae membranes. Here, we have used a deletion mutagenesis approach as a first step toward understanding which regions of caveolin-1 contribute to its unusual properties. Two caveolin-1 deletion mutants were created that lack either the C-terminal domain (Cav-1DeltaC) or the N-terminal domain (Cav-1DeltaN); these mutants were compared with the behavior of full-length caveolin-1 (Cav-1FL) expressed in parallel. Our results show that the N-terminal domain and membrane spanning segment are sufficient to form high molecular mass oligomers of caveolin-1. However, a complete caveolin-1 molecule is required for conveying detergent insolubility and incorporation into low density Triton-insoluble complexes. These data indicate that homo-oligomerization and an intact transmembrane are not sufficient to confer detergent insolubility, suggesting an unknown role for the C-terminal domain in this process. To better understand the role of the C-terminal domain, this region of caveolin-1 (residues 135-178) was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Purified recombinant glutathione S-transferase-C-Cav-1 was found to stably interact with full-length caveolin-1 but not with the two caveolin-1 deletion mutants. These results suggest that the C-terminal domain interacts with both the N-terminal and C-terminal domains of an adjacent caveolin-1 homo-oligomer. This appears to be a specific homo-typic interaction, because the C-terminal domain of caveolin-1 failed to interact with full-length forms of caveolin-2 and caveolin-3. Homo-typic interaction of the C-terminal domain with an adjacent homo-oligomer could provide a mechanism for clustering caveolin-1 homo-oligomers while excluding other caveolin family members. This type of lateral segregation event could promote caveolae membrane formation and contribute to the detergent insolubility of caveolins-1, -2, and -3.

Cite

CITATION STYLE

APA

Song, K. S., Tang, Z., Li, S., & Lisanti, M. P. (1997). Mutational Analysis of the Properties of Caveolin-1. Journal of Biological Chemistry, 272(7), 4398–4403. https://doi.org/10.1074/jbc.272.7.4398

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free