7,8-dihydroxyflavone protects human keratinocytes against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways

45Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

This study investigated the effect of 7,8-dihydroxyflavone (DHF) on the expression and activity of heme oxygenase-1 (HO-1), an enzyme with potent antioxidant properties, as well as the molecular mechanisms involved. DHF markedly upregulated HO-1 mRNA and protein expression in human keratinocytes (HaCaT cells), resulting in increased HO-1 activity. DHF also increased the protein level of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates HO-1 expression by binding to the antioxidant response element (ARE) within the HO-1 gene promoter, in a time-dependent manner. Moreover, DHF decreased the expression of Kelch-like ECH-associated protein 1, a repressor of Nrf2 activity, and induced the translocation of Nrf2 from the cytosol into the nucleus, thereby allowing its association with the ARE site. DHF activated extracellular-regulated kinase (ERK) and protein kinase B (PKB, Akt) in keratinocytes, while the ERK and Akt inhibitors attenuated DHF-enhanced Nrf2 and HO-1 expression. DHF also protected the keratinocytes against hydrogen peroxide- and ultraviolet B-induced oxidative damage, while HO-1, ERK and Akt inhibitors markedly suppressed DHF-mediated cytoprotection. Taken together, the results suggested that DHF activates ERK- and Akt-Nrf2 signaling cascades in HaCaT cells, leading to the upregulation of HO-1 and cytoprotection against oxidative stress.

Cite

CITATION STYLE

APA

Ryu, M. J. U., Kang, K. A. H., Piao, M. J., Kim, K. C., Zheng, J., Yao, C. W., … Hyun, J. W. (2014). 7,8-dihydroxyflavone protects human keratinocytes against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways. International Journal of Molecular Medicine, 33(4), 964–970. https://doi.org/10.3892/ijmm.2014.1643

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free