A historical and proteomic analysis of botulinum neurotoxin type/G

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex. Results: An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs - nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison. Conclusions: The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MSE data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin. © 2011Terilli et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Terilli, R. R., Moura, H., Woolfitt, A. R., Rees, J., Schieltz, D. M., & Barr, J. R. (2011). A historical and proteomic analysis of botulinum neurotoxin type/G. BMC Microbiology, 11. https://doi.org/10.1186/1471-2180-11-232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free