Objective-: Inflammatory processes and foam cell formation are key determinants in the initiation and progression of atherosclerosis. Electrophilic nitro-fatty acids, byproducts of nitric oxide-and nitrite-dependent redox reactions of unsaturated fatty acids, exhibit antiinflammatory signaling actions in inflammatory and vascular cell model systems. The in vivo action of nitro-fatty acids in chronic inflammatory processes such as atherosclerosis remains to be elucidated.Methods and results-: Herein, we demonstrate that subcutaneously administered 9-and 10-nitro-octadecenoic acid (nitro-oleic acid) potently reduced atherosclerotic lesion formation in apolipoprotein E-deficient mice. Nitro-fatty acids did not modulate serum lipoprotein profiles. Immunostaining and gene expression analyses revealed that nitro-oleic acid attenuated lesion formation by suppressing tissue oxidant generation, inhibiting adhesion molecule expression, and decreasing vessel wall infiltration of inflammatory cells. In addition, nitro-oleic acid reduced foam cell formation by attenuating oxidized low-density lipoprotein-induced phosphorylation of signal transducer and activator of transcription-1, a transcription factor linked to foam cell formation in atherosclerotic plaques. Atherosclerotic lesions of nitro-oleic acid-treated animals also showed an increased content of collagen and α-smooth muscle actin, suggesting conferral of higher plaque stability. Conclusion-: These results reveal the antiatherogenic actions of electrophilic nitro-fatty acids in a murine model of atherosclerosis. © 2010 American Heart Association, Inc.
CITATION STYLE
Rudolph, T. K., Rudolph, V., Edreira, M. M., Cole, M. P., Bonacci, G., Schopfer, F. J., … Freeman, B. A. (2010). Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(5), 938–945. https://doi.org/10.1161/ATVBAHA.109.201582
Mendeley helps you to discover research relevant for your work.