TurboID-EV: Proteomic Mapping of Recipient Cellular Proteins Proximal to Small Extracellular Vesicles

1Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Extracellular vesicles (EVs), including exosomes, have been recognized as key mediators of intercellular communications through donor EV and recipient cell interaction. Until now, most studies have focused on the development of analytical tools to separate EVs and their applications for the molecular profiling of EV cargo. However, we lack a complete picture of the mechanism of EV uptake by the recipient cells. Here, we developed the TurboID-EV system with the engineered biotin ligase TurboID, tethered to the EV membrane, which allowed us to track the footprints of EVs during and after EV uptake by the proximity-dependent biotinylation of recipient cellular proteins. To analyze biotinylated recipient proteins from low amounts of input cells (corresponding to ∼10 μg of proteins), we developed an integrated proteomic workflow that combined stable isotope labeling with amino acids in cultured cells (SILAC), fluorescence-activated cell sorting, spintip-based streptavidin affinity purification, and mass spectrometry. Using this method, we successfully identified 456 biotinylated recipient proteins, including not only well-known proteins involved in endocytosis and macropinocytosis but also other membrane-associated proteins such as desmoplakin and junction plakoglobin. The TurboID-EV system should be readily applicable to various EV subtypes and recipient cell types, providing a promising tool to dissect the specificity of EV uptake mechanisms on a proteome-wide scale.

Cite

CITATION STYLE

APA

Li, Y., Kanao, E., Yamano, T., Ishihama, Y., & Imami, K. (2023). TurboID-EV: Proteomic Mapping of Recipient Cellular Proteins Proximal to Small Extracellular Vesicles. Analytical Chemistry, 95(38), 14159–14164. https://doi.org/10.1021/acs.analchem.3c01015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free