A sparsity-promoted method based on majorization-minimization for weak fault feature enhancement

20Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.

Cite

CITATION STYLE

APA

Ren, B., Hao, Y., Wang, H., Song, L., Tang, G., & Yuan, H. (2018). A sparsity-promoted method based on majorization-minimization for weak fault feature enhancement. Sensors (Switzerland), 18(4). https://doi.org/10.3390/s18041003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free