Mimicking nature using artificial technologies has always been a quest/fascination of scientists and researchers of all eras. This paper characterizes viscous fingering instability-based, lithography-less, spontaneous, and scalable process towards fabrication of 3D patterns like nature-inspired honeycomb structures with ultra-high aspect ratio walls. Rich experimental characterization data on volatile polymer solution evolution in a uniport lifted Hele-Shaw cell (ULHSC) is represented on a non-dimensional phase plot. The plot with five orders of magnitude variation of non-dimensional numbers on each axis demarcates the regions of several newly observed phenomena: ‘No retention’, ‘Bridge breaking’, and ‘Wall formation’ with ‘stable’ and ‘unstable’ interface evolution. A new non-dimensional ratio of the velocity of evaporating static interface versus lifting velocity is proposed for the same. This phase plot along with physical insights into the phenomena observed, pave pathways for extending the method to multiport LHSC (MLHSC) to demonstrate multiwell honeycomb structures. The work thus establishes a solid foundation with valuable insights for scalable manufacturing of devices useful for application in biomedical and other domains.
CITATION STYLE
Rakshe, M. A., & Gandhi, P. S. (2023). Controlled viscous fingering in volatile fluid towards spontaneous evolution of ordered 3D patterns. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35510-z
Mendeley helps you to discover research relevant for your work.