The low efficiency of organic light-emitting diodes based on lanthanide complexes is generally attributed to the triplet-triplet annihilation processes in the regime of high concentration of excited states caused by their long lifetimes and optical losses near the interfaces of multilayer device structures. Despite the enormous effort to synthesize short-lived complexes and minimize the optical losses in the interfaces, it remains insufficient in understanding the exciton recombination processes that reduce the lifetime of these complexes. Herein, we investigated the influence of the exciton recombination processes on a Tb complex (Tb-C) lifetime in the regime of a highly excited state concentration as a function of the distance between the carrier layer and the interface by using a typical organic light-emitting diode structure. Our results show that a 10 nm-thick Alq3 layer decreases the exciton lifetime of the Tb-C, increasing approximately by 16 times the spontaneous emission decay rate of triplet exciton. The effects of interference and optical losses at the metallic interface contribute actively to the modulation of the emission intensity and lifetime decay. However, these effects alone do not explain the significant increase in the emission decay rate. The nonradiative Auger process at the Alq3/Tb-C interface seems to be largely accountable for the Tb-C lifetime reduction as the energy released by the terbium ion occurs by the excitation of an adjacent electron at higher energy. Furthermore, we propose a simple theoretical model to explain the observed effects. These results can provide a new approach to reduce the lanthanide complexes' lifetime through the Auger electron process near the interface and thus improve the performance of organic light-emitting diodes.
CITATION STYLE
Pereira, A., Conte, G., Faceto, A. D., Nunes, L. A. O., Quirino, W. G., Legnani, C., … Guimarães, F. E. G. (2019). Influence of nonradiative Auger process in the lanthanide complexes lifetime near interfaces in organic light-emitting diode structures. Journal of Applied Physics, 126(16). https://doi.org/10.1063/1.5099014
Mendeley helps you to discover research relevant for your work.