An optimal transport formulation of the Einstein equations of general relativity

20Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The goal of the paper is to give an optimal transport formulation of the full Einstein equations of general relativity, linking the (Ricci) curvature of a space-time with the cosmological constant and the energy-momentum tensor. Such an optimal transport formulation is in terms of convexity/concavity properties of the Boltzmann–Shannon entropy along curves of probability measures extremizing suitable optimal transport costs. The result gives a new connection between general relativity and optimal transport; moreover, it gives a mathematical reinforcement of the strong link between general relativity and thermodynamics/information theory that emerged in the physics literature of the last years.

Cite

CITATION STYLE

APA

Mondino, A., & Suhr, S. (2023). An optimal transport formulation of the Einstein equations of general relativity. Journal of the European Mathematical Society, 25(3), 933–994. https://doi.org/10.4171/JEMS/1188

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free