Sound attenuation in ducts using locally resonant periodic aluminum patches

  • Farooqui M
  • Elnady T
  • Akl W
16Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In recent years, the control of low frequency noise has received a lot of attention for several applications. Traditional passive noise control techniques using Helmholtz resonators have size limitations in the low frequency range because of the long wavelength. Promising noise reductions, with flush mounted aluminum patches with no size problems can be obtained using local resonance phenomenon implemented in acoustic metamaterial techniques. The objective of this work is to introduce locally resonant thin aluminum patches flush mounted to a duct walls aiming at creating frequency stop bands in a specific frequency range. Green's function is used within the framework of interface response theory to predict the amount of attenuation of the local resonant patches. The two-port theory and finite elements are also used to predict the acoustic performance of these patches. No flow measurements were conducted and show good agreement with the models. The effect of varying the damping and the masses of the patches are used to expand the stop bandwidth and the effect of both Bragg scattering and the locally resonant mechanisms was demonstrated using mathematical models. The effect of the arrays of patches on the effective dynamic density and bulk modulus has also been investigated.

Cite

CITATION STYLE

APA

Farooqui, M., Elnady, T., & Akl, W. (2016). Sound attenuation in ducts using locally resonant periodic aluminum patches. The Journal of the Acoustical Society of America, 139(6), 3277–3287. https://doi.org/10.1121/1.4948990

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free