Resource-Constrained Machine Learning for ADAS: A Systematic Review

41Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The advent of machine learning (ML) methods for the industry has opened new possibilities in the automotive domain, especially for Advanced Driver Assistance Systems (ADAS). These methods mainly focus on specific problems ranging from traffic sign and light recognition to pedestrian detection. In most cases, the computational resources and power budget found in ADAS systems are constrained while most machine learning methods are computationally intensive. The usual solution consists in adapting the ML models to comply with the memory and real-time (RT) requirements for inference. Some models are easily adapted to resource-constrained hardware, such as Support Vector Machines, while others, like Neural Networks, need more complex processes to fit into the desired hardware. The ADAS hardware (HW platforms) are diverse, from complex MPSoC CPUs down to classical MCUs, DPSs and application-specific FPGAs and ASICs or specific GPU platforms (such as the NVIDIA families Tegra or Jetson). Therefore, there is a tradeoff between the complexity of the ML model implemented and the selected platform that impacts the performance metrics: function results, energy consumption and speed (latency and throughput). In this paper, a survey in the form of systematic review is conducted to analyze the scope of the published research works that embed ML models into resource-constrained implementations for ADAS applications and what are the achievements regarding the ML performance, energy and speed trade-off.

Cite

CITATION STYLE

APA

Borrego-Carazo, J., Castells-Rufas, D., Biempica, E., & Carrabina, J. (2020). Resource-Constrained Machine Learning for ADAS: A Systematic Review. IEEE Access. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2020.2976513

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free