Most coastal flood risk studies make use of a Digital Elevation Model (DEM) in addition to a projected flood water level in order to estimate the flood inundation and associated damages to property and livelihoods. The resolution and accuracy of a DEM are critical in a flood risk assessment, as land elevation largely determines whether a location will be flooded or will remain dry during a flood event. Especially in low lying deltaic areas, the land elevation variation is usually in the order of only a few decimeters, and an offset of various decimeters in the elevation data has a significant impact on the accuracy of the risk assessment. Publicly available DEMs are often used in studies for coastal flood risk assessments. The accuracy of these datasets is relatively low, in the order of meters, and is especially low in comparison to the level of accuracy required for a flood risk assessment in a deltaic area. For a coastal zone area in Nigeria (Lagos State) an accurate LiDAR DEM dataset was adopted as ground truth concerning terrain elevation. In the case study, the LiDAR DEM was compared to various publicly available DEMs. The coastal flood risk assessment using various publicly available DEMs was compared to a flood risk assessment using LiDAR DEMs. It can be concluded that the publicly available DEMs do not meet the accuracy requirement of coastal flood risk assessments, especially in coastal and deltaic areas. For this particular case study, the publically available DEMs highly overestimated the land elevation Z-values and thereby underestimated the coastal flood risk for the Lagos State area. The findings are of interest when selecting data sets for coastal flood risk assessments in low-lying deltaic areas. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
CITATION STYLE
Van de Sande, B., Lansen, J., & Hoyng, C. (2012). Sensitivity of coastal flood risk assessments to digital elevation models. Water (Switzerland), 4(3), 568–579. https://doi.org/10.3390/w4030568
Mendeley helps you to discover research relevant for your work.