As the number of single-person households continues to increase, contents related to exercise at home are increasing. Therefore, this paper proposes a framework for efficient home fitness. The home fitness framework proposed in this paper is based on a method of acquiring expert motion information and providing it to users. To this end, content creation and provision are implemented by using Kinect and Unreal game engine. In addition, it is possible to provide customized home fitness in consideration of the user's athletic ability. The proposed system first captures the expert's motion and stores it. We propose a method that can efficiently store stop motion and dynamic motion storage. In the case of each user, since there is a difference in exercise ability for each individual, an adverse effect may occur if an excessively accurate motion is requested. Therefore, to solve these problems, we present the parts that can be considered for each joint. For the exercise motion provided by the expert, a method was provided that allows the user to adjust the degree of matching for each joint in consideration of user's own exercise ability. That is, joint parts that do not require exact matching could be completely excluded from matching. For parts that would be subject to large changes, a range of errors is specified. As the training progresses, the error range is reduced, and the excluded parts are presented to be matched gradually. Such adjustments are made based on expert feedback. In this way, it was possible to improve the exercise effect gradually. This paper proposes an effective method for personalized home fitness according to the user's athletic ability. This will apply to various fields besides home fitness.
CITATION STYLE
Park, H., & Jeong, S. (2022). A Framework for Personalized Training at Home Based on Motion Capture. International Journal on Informatics Visualization, 6(1–2), 264–269. https://doi.org/10.30630/joiv.6.1-2.940
Mendeley helps you to discover research relevant for your work.