Genetic Characteristics of Conditional Lethal Mutants of Vesicular Stomatitis Virus Induced by 5-Fluorouracil, 5-Azacytidine, and Ethyl Methane Sulfonate

  • Pringle C
114Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

One hundred and seventy-five temperature-sensitive ( ts ) mutants of vesicular stomatitis virus (type Indiana-C) induced by 5-fluorouracil (FU), 5-azacytidine (ACR), and ethyl methane sulfonate (EMS) have been assigned to four complementation groups by a qualitative test. Group I contains 151 mutants; group II, 2 mutants; group III, 1 mutant; and group IV, 15 mutants; 6 are unclassified. FU was much more effective as a mutagen than either ACR or EMS. The proportion of the mutants belonging to groups I and IV, however, was similar in the case of all three mutagens. Fifteen mutants from groups I and IV have been used to obtain quantitative complementation data. Both groups appear to be homogeneous. Complementation yields increase with increasing multiplicity, but the number of particles per cell required to elicit maximal complementation is small. The pattern of genetic recombination parallels that of complementation. No recombination could be detected in crosses within group I (<0.001%) or group IV (<0.07%), whereas recombination (0.31 to 3.4%) was observed in crosses between groups I and IV. Recombination frequency did not increase with multiplicity above an input of 0.6 plaque-forming units per cell. Many group I mutants have very low reversion rates, and BHK 21 clone 13 cells infected with one of these mutants have been “cured” of infection by prolonged exposure at the restrictive temperature.

Cite

CITATION STYLE

APA

Pringle, C. R. (1970). Genetic Characteristics of Conditional Lethal Mutants of Vesicular Stomatitis Virus Induced by 5-Fluorouracil, 5-Azacytidine, and Ethyl Methane Sulfonate. Journal of Virology, 5(5), 559–567. https://doi.org/10.1128/jvi.5.5.559-567.1970

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free