The Personal Rapid Transit is a new emergent transportation tool. It relies on using a set of small driverless electric vehicles to transport people on demand. Because of the specific on-demand characteristic of the Personal Rapid Transit system, many Personal Rapid Transit vehicles would move empty which results in a high level of wasted transportation capacity. This is enhanced while using Personal Rapid Transit vehicles with limited electric battery capacity. This paper deals with this problem in a real time context while minimizing the set of empty vehicle movements. First, a mathematical formulation to benchmark waiting time of passengers in Personal Rapid Transit systems is proposed. Then, a simulation model that captures the main features of the Personal Rapid Transit system is developed. A decision support system which integrates several real time solution strategies as well as a simulation module is proposed. Our dispatching strategies are evaluated and compared based on our simulation model. The efficiency of our method is tested through extensive test studies.
CITATION STYLE
Fatnassi, E., Chebbi, O., & Chaouachi, J. (2017). Dealing with the empty vehicle movements in personal rapid transit system with batteries constraints in a dynamic context. Journal of Advanced Transportation, 2017. https://doi.org/10.1155/2017/8512728
Mendeley helps you to discover research relevant for your work.