Effect of different composition on voltage attenuation of Li-rich cathode material for lithium-ion batteries

25Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high specific energy lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize Li1.5Mn0.55Ni0.4Co0.05O2.5 (Li1.2Mn0.44Ni0.32Co0.04O2) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to Li1.5Mn0.66Ni0.17Co0.17O2.5 (Li1.2Mn0.54Ni0.13Co0.13O2) and Li1.5Mn0.65Ni0.25Co0.1O2.5 (Li1.2Mn0.52Ni0.2Co0.08O2) cathode materials. The capacity retention at 1 C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray di_raction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.

Cite

CITATION STYLE

APA

Liu, J., Liu, Q., Zhu, H., Lin, F., Ji, Y., Li, B., … Chen, Z. (2020). Effect of different composition on voltage attenuation of Li-rich cathode material for lithium-ion batteries. Materials, 13(1). https://doi.org/10.3390/ma13010040

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free