Zero-shot recognition via direct classifier learning with transferred samples and Pseudo Labels

13Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

As an interesting and emerging topic, zero-shot recognition (ZSR) makes it possible to train a recognition model by specifying the category's attributes when there are no labeled exemplars available. The fundamental idea for ZSR is to transfer knowledge from the abundant labeled data in different but related source classes via the class attributes. Conventional ZSR approaches adopt a two-step strategy in test stage, where the samples are projected into the attribute space in the first step, and then the recognition is carried out based on considering the relationship between samples and classes in the attribute space. Due to this intermediate transformation, information loss is unavoidable, thus degrading the performance of the overall system. Rather than following this two-step strategy, in this paper, we propose a novel one-step approach that is able to perform ZSR in the original feature space by using directly trained classifiers. To tackle the problem that no labeled samples of target classes are available, we propose to assign pseudo labels to samples based on the reliability and diversity, which in turn will be used to train the classifiers. Moreover, we adopt a robust SVM that accounts for the unreliability of pseudo labels. Extensive experiments on four datasets demonstrate consistent performance gains of our approach over the state-of-the-art two-step ZSR approaches.

Cite

CITATION STYLE

APA

Guo, Y., Ding, G., Han, J., & Gao, Y. (2017). Zero-shot recognition via direct classifier learning with transferred samples and Pseudo Labels. In 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 4061–4067). AAAI press. https://doi.org/10.1609/aaai.v31i1.11191

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free