Accurate and timely regional crop yield information, particularly field-level yield estimation, is essential for commodity traders and producers in planning production, growing, harvesting, and other interconnected marketing activities. In this study, we propose a novel data assimilation framework. Firstly, we construct the likelihood constraints for a process-based crop growth model based on the previous year’s statistical yield and the current year’s field observations. Then, we infer the posterior sets of model-simulated time-series LAI and the final yield of winter wheat with a Markov chain Monte Carlo (MCMC) method for each meteorological data grid of the European Centre for Medium-Range Weather Forecasts Reanalysis (v5ERA5). Finally, we estimate the winter wheat yield at the spatial resolution of 10 m by combining Sentinel-2 LAI and the WOFOST model in Hengshui, the prefecture-level city of Hebei province of China. The results show that the proposed framework can estimate the winter wheat yield with a coefficient of determination R2 equal to 0.29 and mean absolute percentage error MAPE equal to 7.20% compared to within-field measurements. However, the agricultural stress that crop growth models cannot quantitatively simulate, such as lodging, can greatly reduce the accuracy of yield estimates.
CITATION STYLE
Wu, Y., Xu, W., Huang, H., & Huang, J. (2022). Bayesian Posterior-Based Winter Wheat Yield Estimation at the Field Scale through Assimilation of Sentinel-2 Data into WOFOST Model. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153727
Mendeley helps you to discover research relevant for your work.