Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock

14Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Purpose. This article proposes to analyze and determine the mining design for shallow-dip deposits hosted in poor quality rock. Methods. We used the UBC tool to find the optimal exploitation method, the Rock mass rating (RMR) and Q-system (Q) to determine the optimal mining stope and the recommended rock support, the numerical modeling by RS2 software with a variety of geotechnical, geometrical, and technical conditions to analyze the evolution of the unstable zone width and the maximum total displacement around the stope after excavation. Findings. The optimum mining method designated by the UBC tool for this type of deposit is the cut and fill. By projecting the obtained RMR and Q-system values on the design graph, it is concluded that the operating stope is located in the stable zone with a height of 3 m, and bolting support is recommended. The simulation by RS2 software reveals that the optimal mining design that can be used to mine shallow-dip vein deposits hosted in poor quality rocks consists of a 3 m high stope and a 75° dip with cemented backfill. Originality. This work presents a study to choose the most suitable underground mining method and mine design for shal-low-dip deposits hosted in poor quality rock. Practical implications. In the mining industry, the success of operating an underground mine is conditioned by the selection of the appropriate method, of the mining design and dimensioning of a rock support adapted to the nature of the rock, and excavation geometry according to the type and nature of the deposit.

Cite

CITATION STYLE

APA

Ghazdali, O., Moustadraf, J., Tagma, T., Alabjah, B., & Amraoui, F. (2021). Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock. Mining of Mineral Deposits, 15(3), 31–38. https://doi.org/10.33271/MINING15.03.031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free