A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer's disease

47Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1-42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase - Akt - BAD pathway. Furthermore, RNS60 also decreased Aβ(1-42)-induced tau phosphorylation via (PI-3 kinase - Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD. © 2014 Modi et al.

Cite

CITATION STYLE

APA

Modi, K. K., Jana, A., Ghosh, S., Watson, R., & Pahan, K. (2014). A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer’s disease. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0103606

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free