Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly(ethylene terephthalate)

15Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effect of diisocyanate chain extender (CE) on the mechanical, rheological, and relaxation properties, as well as on molecular weight and crystallizability, of starting poly(ethylene terephthalate) (PET) and its composites containing carbon nanomaterials (CNM) such as carbon nanotubes (CNTs) and commercial carbon (CC) has been studied. The composites were compounded in molten PET using twin-screw extruder (screw diameter 35mm; L D = 40). To improve the distribution of CNM in the polymeric matrix (before introduction into the melt), they were blended with PET powder and subjected to an ultrasonic treatment in methylene chloride. The salient features of the materials structure were estimated based on DSC and relaxation spectrometry (dynamic mechanical analysis) data. It has been found that CNM additives partly suppress the PET-chain extension reactions which take place during interaction between macromolecular end groups and CE. Besides, both CNT and CC favour crystallizability of the modified PET owing to nucleation of the crystallization process. The influence of CNT appears to be more effective than that of CC. Enhancements in true mechanical strength and deformability of PET/CE/CNM composites, as against PET/CE materials, were found to be most clearly exhibited by the CNT-containing composites. © 2012 Vladimir Agabekov et al.

Cite

CITATION STYLE

APA

Agabekov, V., Golubovich, V., & Pesetskii, S. (2012). Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly(ethylene terephthalate). Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/870307

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free