The effects of pulsatility in blood flow on endothelium-derived nitric oxide (EDNO) release in the peripheral vasculature were investigated. The basal and flow-stimulated EDNO release were compared between pulsatile and nonpulsatile systemic flows before and after the administration of NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). Peripheral vascular resistance (PVR) was significantly lower in pulsatile flow than in nonpulsatile flow, but this difference disappeared after L-NMMA. The percent increase in PVR by L-NMMA was significantly larger in pulsatile flow. In reactive hyperemia in the hindlimb, the peak flow did not differ; however, both the repayment flow and the duration were significantly larger in pulsatile flow. Percent changes of these parameters by L-NMMA were significantly larger in pulsatile flow. These data indicated that pulsatility significantly enhances the basal and flow-stimulated EDNO release in the peripheral vasculature under in vivo conditions. We also studied the involvement of the Ca2+-dependent and Ca2+-independent pathways in flow- induced vasodilation using calmodulin inhibitor calmidazolium and tyrosine kinase inhibitor erbstatin A. PVR was significantly elevated by erbstatin A but not by calmidazolium, suggesting that flow-induced vasodilation was largely caused by tyrosine kinase inhibitor-sensitive activation of NO synthase.
CITATION STYLE
Nakano, T., Tominaga, R., Nagano, I., Okabe, H., & Yasui, H. (2000). Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 278(4 47-4). https://doi.org/10.1152/ajpheart.2000.278.4.h1098
Mendeley helps you to discover research relevant for your work.