Rotationally averaged linear absorption spectra beyond the electric-dipole approximation

23Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Based on the recently developed implementation of the full semi-classical field–matter interaction operator, we present a numerically accurate yet efficient scheme to perform rotational averaging of linear absorption spectra beyond the electric-dipole approximation. This allows for a gauge-origin independent determination of UV/vis and X-ray absorption spectra for randomly oriented systems such as multilayers, liquids, and gas phase samples. The approach is illustrated by the determination of spectral intensities of electric-dipole allowed π → π* transitions and electric-dipole forbidden n → π* transitions in the UV–vis region of the spectrum as well as electric-dipole forbidden 1s → 3d transitions in the X-ray region of the spectrum. The employed Lebedev quadrature scheme shows very fast convergence with respect to the number of symmetry-independent quadrature points–in all considered cases, the oscillator strengths for the randomly oriented systems are fully converged with use of only seven quadrature points.

Cite

CITATION STYLE

APA

List, N. H., Saue, T., & Norman, P. (2017). Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Molecular Physics, 115(1–2), 63–74. https://doi.org/10.1080/00268976.2016.1187773

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free