The molecular mechanism underlying acute right heart failure (RHF) is poorly understood. We used pulmonary artery banding (PAB) to induce acute RHF characterized by a rapid rise of right ventricular pressure, and then a decrease in right ventricular pressure along with a decrease in blood pressure right after banding. We found higher brain natriuretic peptide (BNP) and beta-myosin heavy chain (βMHC) levels and lower alpha-myosin heavy chain (αMHC) levels in RHF rats than shamoperated rats. Hemodynamic indexes in rats with acute RHF were slightly improved by trimedazidine TMZ, a key inhibitor of fatty acid (FA) oxidation. TMZ also reversed downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1β) and peroxisome proliferator-activated receptor alpha (PPARα) by PAB and up-regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor delta (PPAδ) and pyruvate dehydrogenase kinase isoform 4 (PDK4). In addition, TMZ reversed upregulation of phosphorylated Akt by PAB and increased phosphorylated prolinerich Akt-substrate 40 (PRAS40). Autophagy and apoptosis were not modified by PAB or TMZ. An acute RHF model was established in rats through 70% constriction of the pulmonary artery. TMZ treatment alleviated PAB-induced acute RHF by activating PRAS40 and upregulatingPGC-11α, PGC-1β, PPAR1α, PPAδ, and PDK4.
CITATION STYLE
Cao, Y., Song, J., Shen, S., Fu, H., Li, X., Xu, Y., … Zhang, M. (2017). Trimedazidine alleviates pulmonary artery banding-induced acute right heart dysfunction and activates PRAS40 in rats. Oncotarget, 8(54), 92064–92078. https://doi.org/10.18632/oncotarget.20752
Mendeley helps you to discover research relevant for your work.