A simple and sensitive method to quantify five different arabidopsides by HPLC—ion trap mass spectrometry in complex plant samples was developed and validated. Arabidopsides are oxidized galactolipids first described in Arabidopsis thaliana but also produced by other plant species under stress conditions. External calibration was performed using arabidopsides purified from freeze-thawed Arabidopsis leaves. Lipids were extracted and pre-purified on an SPE silica column before HPLC–MS analysis. Arabidopsides were separated on a C18 column using a gradient of mQ water and acetonitrile:mQ water (85:15) supplemented with formic acid (0.2%) and ammonium formate (12 mM). The method was validated according to European commission decision 2002/657/CE. LOD, LOQ, linearity, intra-day and inter-day precision and accuracy, selectivity, matrix effects and recoveries were determined for the five metabolites. The established method is highly selective in a complex plant matrix. LOD and LOQ were, respectively, in the range 0.098–0.78 and 0.64–1.56 µM, allowing the arabidopside quantification from 25.6–62.4 nmol/g fresh weight. Calibration curve correlation coefficients were higher than 0.997. Matrix effects ranged from -2.09% to 6.10% and recoveries between 70.7% and 109%. The method was successfully applied to complex plant matrixes: Arabidopsis thaliana and Nasturtium officinale.
CITATION STYLE
Genva, M., Andersson, M. X., & Fauconnier, M. L. (2020). Simple liquid chromatography-electrospray ionization ion trap mass spectrometry method for the quantification of galacto-oxylipin arabidopsides in plant samples. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68757-x
Mendeley helps you to discover research relevant for your work.