Steroidogenic acute regulatory protein (STAR) is a key molecule for steroid production by translocating cholesterol from the outer to inner mitochondrial membrane. Two cDNAs of different length encoding StAR was cloned from the head kidney of the eel (Anguilla japonica). In the 3′-untranslated region (UTR) of the longer cDNA, two putative polyadenylation signals were found. The shorter one differed from the longer one solely by the lack of middle of 3′-UTR including the first polyadenylation signal. Reverse transcription-polymerase chain reaction (RT-PCR) that differentiates the two mRNAs showed that the ratio of the two was highly variable among individuals, and no preferential expression was detected between freshwater and seawater eels. The predicted protein consists of 285 amino acid residues with 64-83% identity to other StARs thus far obtained. RT-PCR analyses revealed that eel StAR mRNA was expressed abundantly in the head kidney and gonad, and faintly in the brain; but no expression was detected in the gill, heart, liver, intestine, kidney and skeletal muscle. Plasma cortisol concentration increased, but StAR mRNA content in the head kidney did not change, 3 and 24 h after transfer of freshwater eels to seawater, indicating that the transcriptional regulation of StAR may not be involved in cortisol production after seawater transfer. However, ACTH elevated both plasma cortisol and StAR mRNA levels in the head kidney 1.5 and 4.5 h after injection. Thus, the steroidogenic effect of ACTH is mediated by increased StAR production as observed in mammals.
CITATION STYLE
Li, Y. Y., Inoue, K., & Takei, Y. (2003). Steroidogenic acute regulatory protein in eels: cDNA cloning and effects of ACTH and seawater transfer on its mRNA expression. Zoological Science, 20(2), 211–219. https://doi.org/10.2108/zsj.20.211
Mendeley helps you to discover research relevant for your work.