Emergent Einstein Equation in p -adic Conformal Field Theory Tensor Networks

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We take the tensor network describing explicit p-adic conformal field theory partition functions proposed in [L.-Y. Hung, J. High Energy Phys. 04 (2019) 170JHEPFG1029-847910.1007/JHEP04(2019)170], and consider boundary conditions of the network describing a deformed Bruhat-Tits (BT) tree geometry. We demonstrate that this geometry satisfies an emergent graph Einstein equation in a unique way that is consistent with the bulk effective matter action encoding the same correlation function as the tensor network, at least in the perturbative limit order by order away from the pure BT tree. Moreover, the (perturbative) definition of the graph curvature in the mathematics [Y. Lin and S.-T. Yau, Tohoku Math. J. 63, 605 (2011)TOMJAM0040-873510.2748/tmj/1325886283; Y. Ollivier, J. Funct. Anal. 256, 810 (2009)JFUAAW0022-123610.1016/j.jfa.2008.11.001] and physics [S. S. Gubser, J. High Energy Phys. 06 (2017) 157JHEPFG1029-847910.1007/JHEP06(2017)157] literature naturally emerges from the consistency requirements of the emergent Einstein equation. This could provide new insights into the understanding of gravitational dynamics potentially encoded in more general tensor networks.

Cite

CITATION STYLE

APA

Chen, L., Liu, X., & Hung, L. Y. (2021). Emergent Einstein Equation in p -adic Conformal Field Theory Tensor Networks. Physical Review Letters, 127(22). https://doi.org/10.1103/PhysRevLett.127.221602

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free