We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing) and then at 250 oC in vacuum for 10 h (2nd step annealing). It is found that the threshold voltage (VTH) changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS) is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy) depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO) by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.
CITATION STYLE
Jeon, J. K., Um, J. G., Lee, S., & Jang, J. (2017). Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT. AIP Advances, 7(12). https://doi.org/10.1063/1.5008435
Mendeley helps you to discover research relevant for your work.