In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial–temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS.
CITATION STYLE
Cai, Y., Jiang, Y., Liu, B., & Djamaluddin, I. (2016). Computational implementation of a GIS developed tool for prediction of dynamic ground movement and deformation due to underground extraction sequence. International Journal of Coal Science and Technology, 3(4), 379–398. https://doi.org/10.1007/s40789-016-0151-0
Mendeley helps you to discover research relevant for your work.